Centrales termoeléctricas

central termoelectricaCentral termoeléctrica de Escatrón, Zaragoza, España.©Diego Delso

Central termoeléctrica

Una central termoeléctrica es una instalación empleada en la generación de energía eléctrica a partir de la energía liberada en forma de calor, normalmente mediante la combustión de combustibles fósiles como petróleo, gas natural o carbón. Este calor es empleado por un ciclo termodinámico convencional para mover un alternador y producir energía eléctrica, liberando dióxido de carbono a la atmósfera.
Cuando el calor se obtiene mediante la fisión controlada de núcleos de uranio la central se llama central nuclear. Este tipo de central no contribuye al efecto invernadero, pero tiene el problema de los residuos radioactivos que han de ser guardados durante miles de años y la posibilidad de accidentes graves.

Introducción

Prácticamente todas las centrales eléctricas de carbón, nucleares, geotérmicas, energía solar térmica o de combustión de biomasa, así como algunas centrales de gas natural son centrales termoeléctricas. El calor residual de una turbina de gas puede usarse para producir vapor y a su vez producir electricidad en lo que se conoce como un ciclo combinado lo cual mejora la eficiencia. Las centrales termoeléctricas no nucleares, particularmente las de combustibles fósiles se conocen también como centrales térmicas o centrales termoeléctricas convencionales.

Historia

La primera central termoeléctrica fue construida por Sigmund Schuckert en la ciudad de Ettal en Baviera y entró en funcionamiento en 1879. Las primeras centrales comerciales fueron la Central de Pearl Street en Nueva York y la Edison Electric Light Station, en Londres, que entraron en funcionamiento en 1882.
Estas primeras centrales utilizaban motores de vapor de pistones. El desarrollo de la turbina de vapor permitió construir centrales más grandes y eficientes por lo que hacia 1905 la turbina de vapor había reemplazado completamente a los motores de vapor de pistones en las grandes centrales eléctricas.

Centrales termoeléctricas de ciclo convencional

Se llaman centrales clásicas o de ciclo convencional a aquellas centrales térmicas que emplean la combustión del carbón, petróleo (aceite) o gas natural para generar la energía eléctrica.
Son consideradas las centrales más económicas, por lo que su utilización está muy extendida en el mundo económicamente avanzado y en el mundo en vías de desarrollo, a pesar de que estén siendo criticadas debido a su elevado impacto medioambiental.
A continuación se muestra el diagrama de funcionamiento de una central térmica de carbón de ciclo convencional:

©BillC

1.- Torre de refrigeración

2.- Bomba hidráulica

3.- Línea de transmisión (trifásica)

4.- Transformador (trifásico)

5.- Generador eléctrico (trifásico)

6.- Turbina de vapor de baja presión

7.- Bomba de condensación

8.- Condensador de superficie

9.- Turbina de media presión

10.- Válvula de control de gases

11.- Turbina de vapor de alta presión

12.- Desgasificador

13.- Calentador

14.- Cinta transportadora de carbón

15.- Tolva de cartón

16.- Pulverizador de carbón

17.- Tambor de vapor

18.- Tolva de cenizas

19.- Supercalentador

20.- Ventilador de tiro forzado

21.- Recalentador

22.- Toma de aire de combustión

23.- Economizador

24.- Precalentador de aire

25.- Precipitador electrostático

26.- Ventilador de tiro inducido

27.- Chimenea de emisiones

Básicamente, el funcionamiento de este tipo de centrales es el mismo independientemente del combustible que se consuma. Así, este se quema en la caldera, liberando calor que se usa para calentar agua. El agua calentada se transformará en vapor con una presión muy elevada, que es la que hace girar una turbina de vapor, lo que transformará la energía interna del vapor en energía mecánica (rotación de un eje). La producción de electricidad se generará en el alternador, por la rotación del rotor (que comparte el mismo eje que la turbina de vapor) y mediante la inducción electromagnética.
La electricidad generada pasa por un transformador, que aumentará su tensión para el transporte.
El vapor que sale de la turbina de vapor se envía a un condensador (termodinámica) para transformarlo en líquido y retornarlo a la caldera para empezar de nuevo un nuevo ciclo de producción de vapor.

esquema funcionamiento energia termoelectricaEsquema básico de funcionamiento de una central térmica de ciclo combinado.©Wikipedia.org

Centrales termoeléctricas de ciclo combinado

En la actualidad se están construyendo numerosas centrales termoeléctricas de las denominadas de ciclo combinado, que son un tipo de central que utiliza gas natural, gasóleo o incluso carbón preparado como combustible para alimentar una turbina de gas. Luego los gases de escape de la turbina de gas todavía tienen una elevada temperatura, se utilizan para producir vapor que mueve una segunda turbina, esta vez de vapor. Cada una de estas turbinas está acoplada a su correspondiente alternador para generar energía eléctrica.
Normalmente durante el proceso de partida de estas centrales solo funciona la turbina de gas; a este modo de operación se lo llama ciclo abierto. Si bien la mayoría de las centrales de este tipo pueden intercambiar el combustible (entre gas y diésel) incluso en funcionamiento.

Como la diferencia de temperatura que se produce entre la combustión y los gases de escape es más alta que en el caso de una turbina de gas o una de vapor, se consiguen rendimientos muy superiores, del orden del 55 %.
⇒Más información aquí.

Gasificación Integrada en Ciclo Combinado (GICC)

En los últimos tiempos se viene desarrollando una nueva tecnología, la Gasificación Integrada en Ciclo Combinado (GICC), que mediante un sistema de gasificación del carbón, reduce ostensiblemente las emisiones contaminantes a la atmósfera, al poder aplicar el ciclo combinado al carbón.
⇒Más detalles pulsando en el siguiente enlace.

Impacto ambiental

La emisión de residuos a la atmósfera y los propios procesos de combustión que se producen en las centrales térmicas tienen una incidencia importante sobre el medio ambiente. Para tratar de paliar, en la medida de lo posible, los daños que estas plantas provocan en el entorno natural, se incorporan a las instalaciones diversos elementos y sistemas.
Algunos tipos de centrales termoeléctricas contribuyen al efecto invernadero emitiendo dióxido de carbono. No es el caso de las centrales de energía solar térmica que al no quemar ningún combustible, no lo hacen. También hay que considerar que la masa de este gas emitida por unidad de energía producida no es la misma en todos los casos: el carbón se compone de carbono e impurezas. Casi todo el carbono que se quema se convierte en dióxido de carbono —también puede convertirse en monóxido de carbono si la combustión es pobre en oxígeno—. En el caso del gas natural, por cada átomo de carbono hay cuatro de hidrógeno que también producen energía al combinarse con oxígeno para convertirse en agua, por lo que contaminan menos por cada unidad de energía que producen y la emisión de gases perjudiciales procedentes de la combustión de impurezas -como los óxidos de azufre- es mucho menor.
El problema de la contaminación es máximo en el caso de las centrales termoeléctricas convencionales que utilizan como combustible carbón. Además, la combustión del carbón tiene como consecuencia la emisión de partículas y óxidos de azufre que contaminan en gran medida la atmósfera. En las de fueloil los niveles de emisión de estos contaminantes son menores, aunque ha de tenerse en cuenta la emisión de óxidos de azufre y hollines ácidos, prácticamente nulos en las plantas de gas.
⇒Conozca más datos sobre el impacto ambiental pulsando aquí.

centrales termoelectricas

Central térmica de Compostilla II, en Cubillos del Sil, León (España).©Silvia Alba

Ventajas y Desventajas

Ventajas

• Son las centrales más baratas de construir (teniendo en cuenta el precio por megavatio instalado), especialmente las de carbón, debido a la simplicidad (comparativamente hablando) de construcción y la energía generada de forma masiva.
• Las centrales de ciclo combinado de gas natural son mucho más eficientes (alcanzan el 50 %) que una termoeléctrica convencional, aumentando la energía eléctrica generada (y por tanto, las ganancias) con la misma cantidad de combustible, y rebajando las emisiones citadas más arriba en un 20 %, quedando así en 0,54 kg de CO2, por kWh producido.
• La gran cantidad de energía térmica generada (en las más eficientes, al menos el 50 % del total de la energía consumida) podría emplearse como energía residual para calefactar (o incluso refrigerar) edificios mediante una red de distribución.

Desventajas

• El uso de combustibles genera emisiones de gases de efecto invernadero y, en algunos casos, de lluvia ácida a la atmósfera, junto a partículas volantes (hollines) en las de carbón, si no están bien depurados los humos.
• Los combustibles fósiles no son una fuente de energía infinita, por lo tanto su uso está limitado por la disponibilidad de las reservas y/o por su rentabilidad económica.
• Afectan negativamente a los ecosistemas fluviales cuando la refrigeración se hace mediante el agua del río en cuestión (lo que no es frecuente, pues es más eficiente hacerla mediante vaporización).

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies