Energía solar fotovoltaica

energia solarLa energía fotovoltaica permite alimentar innumerables aplicaciones y aparatos autónomos, abastecer refugios de montaña o viviendas aisladas de la red eléctrica.©Pixabay

Energía solar fotovoltaica

La energía solar fotovoltaica es una fuente de energía que produce electricidad de origen renovable, obtenida directamente a partir de la radiación solar mediante un dispositivo semiconductor denominado célula fotovoltaica, o bien mediante una deposición de metales sobre un sustrato denominada célula solar de película fina.
Este tipo de energía se usa principalmente para producir electricidad a gran escala a través de redes de distribución, aunque también permite alimentar innumerables aplicaciones y aparatos autónomos, abastecer refugios de montaña o viviendas aisladas de la red eléctrica. Debido a la creciente demanda de energías renovables, la fabricación de células solares e instalaciones fotovoltaicas ha avanzado considerablemente en los últimos años. Comenzaron a producirse en masa a partir del año 2000, cuando medioambientalistas alemanes y la organización Eurosolar obtuvo financiación para la creación de diez millones de tejados solares.
Programas de incentivos económicos, primero, y posteriormente sistemas de autoconsumo fotovoltaico y balance neto sin subsidios, han apoyado la instalación de la fotovoltaica en un gran número de países. Gracias a ello la energía solar fotovoltaica se ha convertido en la tercera fuente de energía renovable más importante en términos de capacidad instalada a nivel global, después de las energías hidroeléctrica y eólica. A principios de 2017, se estima que hay instalados en todo el mundo cerca de 300 GW de potencia fotovoltaica.
La energía fotovoltaica no emite ningún tipo de polución durante su funcionamiento, contribuyendo a evitar la emisión de gases de efecto invernadero. Su principal desventaja consiste en que su producción depende de la radiación solar, por lo que si la célula no se encuentra alineada perpendicularmente al Sol se pierde entre un 10-25 % de la energía incidente. Debido a ello, en las plantas de conexión a red se ha popularizado el uso de seguidores solares para maximizar la producción de energía. La producción se ve afectada asimismo por las condiciones meteorológicas adversas, como la falta de sol, nubes o la suciedad que se deposita sobre los paneles. Esto implica que para garantizar el suministro eléctrico es necesario complementar esta energía con otras fuentes de energía gestionables como las centrales basadas en la quema de combustibles fósiles, la energía hidroeléctrica o la energía nuclear.

energia solarInstalación de paneles solares.©Pixabay

Historia

El término «fotovoltaico» se comenzó a usar en Reino Unido en el año 1849. Proviene del griego φώς: phos, que significa «luz», y de -voltaico, que proviene del ámbito de la electricidad, en honor al físico italiano Alejandro Volta.
El efecto fotovoltaico fue reconocido por primera vez unos diez años antes, en 1839, por el físico francés Alexandre-Edmond Becquerel, pero la primera célula solar no se fabricó hasta 1883. Su creador fue Charles Fritts, quien recubrió una muestra de selenio semiconductor con pan de oro para formar la unión. Este primitivo dispositivo presentaba una eficiencia menor del 1 %, pero demostró de forma práctica que, efectivamente, producir electricidad con luz era posible. Los estudios realizados en el siglo XIX por Michael Faraday, James Clerk Maxwell, Nikola Tesla y Heinrich Hertz sobre inducción electromagnética, fuerzas eléctricas y ondas electromagnéticas, y sobre todo los de Albert Einstein en 1905, proporcionaron la base teórica al efecto fotoeléctrico, que es el fundamento de la conversión de energía solar a electricidad.

Principio de funcionamiento

Cuando un semiconductor dopado se expone a radiación electromagnética, se desprende del mismo un fotón, que golpea a un electrón y lo arranca, creando un hueco en el átomo. Normalmente, el electrón encuentra rápidamente otro hueco para volver a llenarlo, y la energía proporcionada por el fotón, por tanto, se disipa en forma de calor. El principio de una célula fotovoltaica es obligar a los electrones y a los huecos a avanzar hacia el lado opuesto del material en lugar de simplemente recombinarse en él: así, se producirá una diferencia de potencial y por lo tanto tensión entre las dos partes del material, como ocurre en una pila.
Para ello, se crea un campo eléctrico permanente, a través de una unión pn, entre dos capas dopadas respectivamente, p y n. En las células de silicio, que son mayoritariamente utilizadas, se encuentran por tanto:
• La capa superior de la celda, que se compone de silicio dopado de tipo n.​ En esta capa, hay un número de electrones libres mayor que en una capa de silicio puro, de ahí el nombre del dopaje n, negativo. El material permanece eléctricamente neutro, ya que tanto los átomos de silicio como los del material dopante son neutros: pero la red cristalina tiene globalmente una mayor presencia de electrones que en una red de silicio puro.
• La capa inferior de la celda, que se compone de silicio dopado de tipo p. Esta capa tiene por lo tanto una cantidad media de electrones libres menor que una capa de silicio puro. Los electrones están ligados a la red cristalina que, en consecuencia, es eléctricamente neutra pero presenta huecos, positivos (p). La conducción eléctrica está asegurada por estos portadores de carga, que se desplazan por todo el material.
En el momento de la creación de la unión pn, los electrones libres de la capa n entran instantáneamente en la capa p y se recombinan con los huecos en la región p. Existirá así durante toda la vida de la unión, una carga positiva en la región n a lo largo de la unión (porque faltan electrones) y una carga negativa en la región en p a lo largo de la unión (porque los huecos han desaparecido); el conjunto forma la «Zona de Carga de Espacio» (ZCE) y existe un campo eléctrico entre las dos, de n hacia p. Este campo eléctrico hace de la ZCE un diodo, que sólo permite el flujo de corriente en una dirección: los electrones pueden moverse de la región p a la n, pero no en la dirección opuesta y por el contrario los huecos no pasan más que de n hacia p.

energia solarCélula solar monocristalina.©dforcesolar.com

En funcionamiento, cuando un fotón arranca un electrón a la matriz, creando un electrón libre y un hueco, bajo el efecto de este campo eléctrico cada uno va en dirección opuesta: los electrones se acumulan en la región n (para convertirse en polo negativo), mientras que los huecos se acumulan en la región dopada p (que se convierte en el polo positivo). Este fenómeno es más eficaz en la ZCE, donde casi no hay portadores de carga (electrones o huecos), ya que son anulados, o en la cercanía inmediata a la ZCE: cuando un fotón crea un par electrón-hueco, se separaron y es improbable que encuentren a su opuesto, pero si la creación tiene lugar en un sitio más alejado de la unión, el electrón (convertido en hueco) mantiene una gran oportunidad para recombinarse antes de llegar a la zona n. Pero la ZCE es necesariamente muy delgada, así que no es útil dar un gran espesor a la célula.

Efectivamente, el grosor de la capa n es muy pequeño, ya que esta capa sólo se necesita básicamente para crear la ZCE que hace funcionar la célula. En cambio, el grosor de la capa p es mayor: depende de un compromiso entre la necesidad de minimizar las recombinaciones electrón-hueco, y por el contrario permitir la captación del mayor número de fotones posible, para lo que se requiere cierto mínimo espesor.
En resumen, una célula fotovoltaica es el equivalente de un generador de energía a la que se ha añadido un diodo. Para lograr una célula solar práctica, además es preciso añadir contactos eléctricos (que permitan extraer la energía generada), una capa que proteja la célula pero deje pasar la luz, una capa antireflectante para garantizar la correcta absorción de los fotones, y otros elementos que aumenten la eficiencia del misma.

Primera célula solar moderna

El ingeniero estadounidense Russell Ohl patentó la célula solar moderna en el año 1946, aunque otros investigadores habían avanzado en su desarrollado con anterioridad: el físico sueco Sven Ason Berglund había patentado en 1914 un método que trataba de incrementar la capacidad de las células fotosensibles, mientras que en 1931, el ingeniero alemán Bruno Lange había desarrollado una fotocélula usando seleniuro de plata en lugar de óxido de cobre.
La era moderna de la tecnología solar no llegó hasta el año 1954, cuando los investigadores estadounidenses Gerald Pearson, Calvin S. Fuller y Daryl Chapin, de los Laboratorios Bell, descubrieron de manera accidental que los semiconductores de silicio dopado con ciertas impurezas eran muy sensibles a la luz. Estos avances contribuyeron a la fabricación de la primera célula solar comercial. Emplearon una unión difusa de silicio p–n, con una conversión de la energía solar de aproximadamente 6 %, un logro comparado con las células de selenio que difícilmente alcanzaban el 0,5 %.
Posteriormente el estadounidense Les Hoffman, presidente de la compañía Hoffman Electronics, a través de su división de semiconductores fue uno de los pioneros en la fabricación y producción a gran escala de células solares. Entre 1954 y 1960, Hoffman logró mejorar la eficiencia de las células fotovoltaicas hasta el 14 %, reduciendo los costes de fabricación para conseguir un producto que pudiera ser comercializado.

energia solarFuncionamiento de una célula solar.©Pixabay

Primeras aplicaciones: energía solar espacial

Al principio, las células fotovoltaicas se emplearon de forma minoritaria para alimentar eléctricamente juguetes y en otros usos menores, dado que el coste de producción de electricidad mediante estas células primitivas era demasiado elevado: en términos relativos, una célula que produjera un vatio de energía mediante luz solar podía costar 250 dólares, en comparación con los dos o tres dólares que costaba un vatio procedente de una central termoeléctrica de carbón.
Las células fotovoltaicas fueron rescatadas del olvido gracias a la carrera espacial y a la sugerencia de utilizarlas en uno de los primeros satélites puestos en órbita alrededor de la Tierra. La Unión Soviética lanzó su primer satélite espacial en el año 1957, y Estados Unidos le seguiría un año después. La primera nave espacial que usó paneles solares fue el satélite norteamericano Vanguard 1, lanzado en marzo de 1958 (hoy en día el satélite más antiguo aún en órbita). En el diseño de éste se usaron células solares creadas por Peter Iles en un esfuerzo encabezado por la compañía Hoffman Electronics. El sistema fotovoltaico le permitió seguir transmitiendo durante siete años mientras que las baterías químicas se agotaron en sólo 20 días.

En 1959, Estados Unidos lanzó el Explorer 6. Este satélite llevaba instalada una serie de módulos solares, soportados en unas estructuras externas similares a unas alas, formados por 9600 células solares de la empresa Hoffman. Este tipo de dispositivos se convirtió posteriormente en una característica común de muchos satélites. Había cierto escepticismo inicial sobre el funcionamiento del sistema, pero en la práctica las células solares demostraron ser un gran éxito, y pronto se incorporaron al diseño de nuevos satélites.
Pocos años después, en 1962, el Telstar se convirtió en el primer satélite de comunicaciones equipado con células solares, capaces de proporcionar una potencia de 14 W. Este hito generó un gran interés en la producción y lanzamiento de satélites geoestacionarios para el desarrollo de las comunicaciones, en los que la energía provendría de un dispositivo de captación de la luz solar. Fue un desarrollo crucial que estimuló la investigación por parte de algunos gobiernos y que impulsó la mejora de los paneles fotovoltaicos. Gradualmente, la industria espacial se decantó por el uso de células solares de arseniuro de galio (GaAs), debido a su mayor eficiencia frente a las células de silicio. En 1970 la primera célula solar con heteroestructura de arseniuro de galio y altamente eficiente se desarrolló en la Unión Soviética por Zhorés Alfiórov y su equipo de investigación.

energia solarLa Estación Espacial Internacional, que obtiene su energía a través de paneles fotovoltaicos, fotografiada contra la negrura del espacio y la delgada línea de la atmósfera de la Tierra.©spaceflight.nasa.gov

energia solarEl telescopio espacial Hubble, equipado con paneles solares, es puesto en órbita desde la bodega del transbordador Discovery en 1990.©nasa.gov

A partir de 1971, las estaciones espaciales soviéticas del programa Salyut fueron los primeros complejos orbitales tripulados en obtener su energía a partir de células solares, acopladas en estructuras a los laterales del módulo orbital, al igual que la estación norteamericana Skylab, pocos años después.
En la década de 1970, tras la primera crisis del petróleo, el Departamento de Energía de los Estados Unidos y la agencia espacial NASA iniciaron el estudio del concepto de energía solar en el espacio, que ambicionaba el abastecimiento energético terrestre mediante satélites espaciales. En 1979 propusieron una flota de satélites en órbita geoestacionaria, cada uno de los cuales mediría 5 x 10 km y produciría entre 5 y 10 GW. La construcción implicaba la creación de una gran factoría espacial donde trabajarían continuamente cientos de astronautas. Este gigantismo era típico de una época en la que se proyectaba la creación de grandes ciudades espaciales. Dejando aparte las dificultades técnicas, la propuesta fue desechada en 1981 por implicar un coste disparatado.A mediados de la década de 1980, con el petróleo de nuevo en precios bajos, el programa fue cancelado.
No obstante, las aplicaciones fotovoltaicas en los satélites espaciales continuaron su desarrollo. La producción de equipos de deposición química de metales por vapores orgánicos o MOCVD (Metal Organic Chemical Vapor Deposition) no se desarrolló hasta la década de 1980, limitando la capacidad de las compañías en la manufactura de células solares de arseniuro de galio. La primera compañía que manufacturó paneles solares en cantidades industriales, a partir de uniones simples de GaAs, con una eficiencia del 17 % en AM0 (Air Mass Zero), fue la norteamericana Applied Solar Energy Corporation (ASEC). Las células de doble unión comenzaron su producción en cantidades industriales por ASEC en 1989, de manera accidental, como consecuencia de un cambio del GaAs sobre los sustratos de GaAs, a GaAs sobre sustratos de germanio.
La tecnología fotovoltaica, si bien no es la única que se utiliza, sigue predominando a principios del siglo XXI en los satélites de órbita terrestre. Por ejemplo, las sondas Magallanes, Mars Global Surveyor y Mars Observer, de la NASA, usaron paneles fotovoltaicos, así como el Telescopio espacial Hubble, en órbita alrededor de la Tierra. La Estación Espacial Internacional, también en órbita terrestre, está dotada de grandes sistemas fotovoltaicos que alimentan todo el complejo espacial, al igual que en su día la estación espacial Mir. Otros vehículos espaciales que utilizan la energía fotovoltaica para abastecerse son la sonda Mars Reconnaissance Orbiter, Spirit y Opportunity, los robots de la NASA en Marte

La nave Rosetta, lanzada en 2004 en órbita hacia un cometa tan lejano del Sol como el planeta Júpiter (5,25 AU), dispone también de paneles solares; anteriormente, el uso más lejano de la energía solar espacial había sido el de la sonda Stardust, a 2 AU. La energía fotovoltaica se ha empleado también con éxito en la misión europea no tripulada a la Luna, SMART-1, proporcionando energía a su propulsor de efecto Hall. La sonda espacial Juno será la primera misión a Júpiter en usar paneles fotovoltaicos en lugar de un generador termoeléctrico de radioisótopos, tradicionalmente usados en las misiones espaciales al exterior del Sistema Solar. Actualmente se está estudiando el potencial de la fotovoltaica para equipar las naves espaciales que orbiten más allá de Júpiter.

energia solarDetalle de los paneles solares fotovoltaicos de la Estación Espacial Internacional.©spaceflight.nasa.gov

Primeras aplicaciones terrestres

Desde su aparición en la industria aeroespacial, donde se ha convertido en el medio más fiable para suministrar energía eléctrica en los vehículos espaciales, la energía solar fotovoltaica ha desarrollado un gran número de aplicaciones terrestres. La primera instalación comercial de este tipo se realizó en 1966, en el faro de la isla Ogami (Japón), permitiendo sustituir el uso de gas de antorcha por una fuente eléctrica renovable y autosuficiente. Se trató del primer faro del mundo alimentado mediante energía solar fotovoltaica, y fue crucial para demostrar la viabilidad y el potencial de esta fuente de energía.
Las mejoras se produjeron de forma lenta durante las siguientes dos décadas, y el único uso generalizado se produjo en las aplicaciones espaciales, en las que su relación potencia a peso era mayor que la de cualquier otra tecnología competidora. Sin embargo, este éxito también fue la razón de su lento crecimiento: el mercado aeroespacial estaba dispuesto a pagar cualquier precio para obtener las mejores células posibles, por lo que no había ninguna razón para invertir en soluciones de menor costo si esto reducía la eficiencia. En su lugar, el precio de las células era determinado en gran medida por la industria de los semiconductores; su migración hacia la tecnología de circuitos integrados en la década de 1960 dio lugar a la disponibilidad de lingotes más grandes a precios relativamente inferiores. Al caer su precio, el precio de las células fotovoltaicas resultantes descendió en igual medida. Sin embargo, la reducción de costes asociada a esta creciente popularización de la energía fotovoltaica fue limitada, y en 1970 el coste de las células solares todavía se estimaba en 100 dólares por vatio.

Aplicaciones de la energía solar fotovoltaica

La producción industrial a gran escala de paneles fotovoltaicos despegó en la década de 1980, y entre sus múltiples usos se pueden destacar:

Telecomunicaciones y señalización

La energía solar fotovoltaica es ideal para aplicaciones de telecomunicaciones, entre las que se encuentran por ejemplo las centrales locales de telefonía, antenas de radio y televisión, estaciones repetidoras de microondas y otros tipos de enlaces de comunicación electrónicos. Esto es debido a que, en la mayoría de las aplicaciones de telecomunicaciones, se utilizan baterías de almacenamiento y la instalación eléctrica se realiza normalmente en corriente continua (DC). En terrenos accidentados y montañosos, las señales de radio y televisión pueden verse interferidas o reflejadas debido al terreno ondulado. En estos emplazamientos, se instalan transmisores de baja potencia (LPT) para recibir y retransmitir la señal entre la población local.Las células fotovoltaicas también se utilizan para alimentar sistemas de comunicaciones de emergencia, por ejemplo en los postes de SOS (Teléfonos de emergencia) en carreteras, señalización ferroviaria, balizamiento para protección aeronáutica, estaciones meteorológicas o sistemas de vigilancia de datos ambientales y de calidad del agua.

Dispositivos aislados

La reducción en el consumo energético de los circuitos integrados, hizo posible a finales de la década de 1970 el uso de células solares como fuente de electricidad en calculadoras, tales como la Royal Solar 1, Sharp EL-8026 o Teal Photon.
También otros dispositivos fijos que utilizan la energía fotovoltaica han visto aumentar su uso en las últimas décadas, en lugares donde el coste de conexión a la red eléctrica o el uso de pilas desechables es prohibitivamente caro. Estas aplicaciones incluyen por ejemplo las lámparas solares, bombas de agua, parquímetros, teléfonos de emergencia, compactadores de basura, señales de tráfico temporales o permanentes, estaciones de carga o sistemas remotos de vigilancia.

energia solarParquímetro abastecido mediante energía solar fotovoltaica.©meypar.com

energia solarRefugio de montaña alimentado mediante energía fotovoltaica, en el Parque nacional de Aigüestortes y Lago de San Mauricio (Pirineos, España).©Josep Borrut

Electrificación rural

En entornos aislados, donde se requiere poca potencia eléctrica y el acceso a la red es difícil, las placas fotovoltaicas se emplean como alternativa económicamente viable desde hace décadas. Para comprender la importancia de esta posibilidad, conviene tener en cuenta que aproximadamente una cuarta parte de la población mundial todavía no tiene acceso a la energía eléctrica.

En los países en desarrollo, muchos pueblos se encuentran situados en áreas remotas, a varios kilómetros de la red eléctrica más próxima. Debido a ello, se está incorporando la energía fotovoltaica de forma creciente para proporcionar suministro eléctrico a viviendas o instalaciones médicas en áreas rurales. Por ejemplo, en lugares remotos de India un programa de iluminación rural ha provisto iluminación mediante lámparas LED alimentadas con energía solar para sustituir a las lámparas de queroseno. El precio de las lámparas solares era aproximadamente el mismo que el coste del suministro de queroseno durante unos pocos meses. Cuba y otros países de Latinoamérica están trabajando para proporcionar energía fotovoltaica en zonas alejadas del suministro de energía eléctrica convencional. Estas son áreas en las que los beneficios sociales y económicos para la población local ofrecen una excelente razón para instalar paneles fotovoltaicos, aunque normalmente este tipo de iniciativas se han visto relegadas a puntuales esfuerzos humanitarios.

Sistemas de bombeo

También se emplea la fotovoltaica para alimentar instalaciones de bombeo para sistemas de riego, agua potable en áreas rurales y abrevaderos para el ganado, o para sistemas de desalinización de agua.
Los sistemas de bombeo fotovoltaico (al igual que los alimentados mediante energía eólica) son muy útiles allí donde no es posible acceder a la red general de electricidad o bien supone un precio prohibitivo. Su coste es generalmente más económico debido a sus menores costes de operación y mantenimiento, y presentan un menor impacto ambiental que los sistemas de bombeo alimentados mediante motores de combustión interna, que tienen además una menor fiabilidad.
Las bombas utilizadas pueden ser tanto de corriente alterna (AC) como corriente continua (DC). Normalmente se emplean motores de corriente continua para pequeñas y medianas aplicaciones de hasta 3 kW de potencia, mientras que para aplicaciones más grandes se utilizan motores de corriente alterna acoplados a un inversor que transforma para su uso la corriente continua procedente de los paneles fotovoltaicos. Esto permite dimensionar sistemas desde 0,15 kW hasta más de 55 kW de potencia, que pueden ser empleados para abastecer complejos sistemas de irrigación o almacenamiento de agua.

Sistemas híbridos solar-diésel

Debido al descenso de costes de la energía solar fotovoltaica, se está extendiendo asimismo el uso de sistemas híbridos solar-diésel, que combinan esta energía con generadores diésel para producir electricidad de forma continua y estable. Este tipo de instalaciones están equipadas normalmente con equipos auxiliares, tales como baterías y sistemas especiales de control para lograr en todo momento la estabilidad del suministro eléctrico del sistema.
Debido a su viabilidad económica (el transporte de diésel al punto de consumo suele ser costoso) en muchos casos se sustituyen antiguos generadores por fotovoltaica, mientras que las nuevas instalaciones híbridas se diseñan de tal manera que permiten utilizar el recurso solar siempre que está disponible, minimizando el uso de los generadores, disminuyendo así el impacto ambiental de la generación eléctrica en comunidades remotas y en instalaciones que no están conectadas a la red eléctrica. Un ejemplo de ello lo constituyen las empresas mineras, cuyas explotaciones se encuentran normalmente en campo abierto, alejadas de los grandes núcleos de población. En estos casos, el uso combinado de la fotovoltaica permite disminuir en gran medida la dependencia del combustible diésel, permitiendo ahorros de hasta el 70 % en el coste de la energía.
Este tipo de sistemas también puede utilizarse en combinación con otras fuentes de generación de energía renovable, tales como la energía eólica.

Transporte y navegación marítima

Aunque la fotovoltaica todavía no se utiliza de forma generalizada para proporcionar tracción en el transporte, se está utilizando cada vez en mayor medida para proporcionar energía auxiliar en barcos y automóviles. Algunos vehículos están equipados con aire acondicionado alimentado mediante paneles fotovoltaicos para limitar la temperatura interior en los días calurosos, mientras que otros prototipos híbridos los utilizan para recargar sus baterías sin necesidad de conectarse a la red eléctrica. Se ha demostrado sobradamente la posibilidad práctica de diseñar y fabricar vehículos propulsados mediante energía solar, así como barcos​ y aviones, siendo considerado el transporte rodado el más viable para la fotovoltaica.
El Solar Impulse es un proyecto dedicado al desarrollo de un avión propulsado únicamente mediante energía solar fotovoltaica. El prototipo puede volar durante el día propulsado por las células solares que cubren sus alas, a la vez que carga las baterías que le permiten mantenerse en el aire durante la noche.
La energía solar también se utiliza de forma habitual en faros, boyas y balizas de navegación marítima, vehículos de recreo, sistemas de carga para los acumuladores eléctricos de los barcos, y sistemas de protección catódica. La recarga de vehículos eléctricos está cobrando cada vez mayor importancia.

Fotovoltaica integrada en edificios

Muchas instalaciones fotovoltaicas se encuentran a menudo situadas en los edificios: normalmente se sitúan sobre un tejado ya existente, o bien se integran en elementos de la propia estructura del edificio, como tragaluces, claraboyas o fachadas.
La fotovoltaica integrada en edificios (BIPV, en sus siglas en inglés) se está incorporando de forma cada vez más creciente como fuente de energía eléctrica principal o secundaria en los nuevos edificios domésticos e industriales, e incluso en otros elementos arquitectónicos, como por ejemplo puentes. Las tejas con células fotovoltaicas integradas son también bastante comunes en este tipo de integración.

energia solar españaMarquesina solar situada en el aparcamiento de la Universidad Autónoma de Madrid (Madrid, España).©Hanjin

Según un estudio publicado en 2011, el uso de imágenes térmicas ha demostrado que los paneles solares, siempre que exista una brecha abierta por la que el aire pueda circular entre los paneles y el techo, proporcionan un efecto de refrigeración pasiva en los edificios durante el día y además ayudan a mantener el calor acumulado durante la noche.

Fotovoltaica de conexión a red

Una de las principales aplicaciones de la energía solar fotovoltaica más desarrollada en los últimos años, consiste en las centrales conectadas a red para suministro eléctrico, así como los sistemas de autoconsumo fotovoltaico, de potencia generalmente menor, pero igualmente conectados a la red eléctrica.

El desarrollo de la energía solar fotovoltaica en España

España es uno de los países de Europa con mayor irradiación anual. Esto hace que la energía solar sea en este país más rentable que en otros. Regiones como el norte de España, que generalmente se consideran poco adecuadas para la energía fotovoltaica, reciben más irradiación anual que la media en Alemania, país que mantiene desde hace años el liderazgo en la promoción de la energía solar fotovoltaica.
Desde principios de la década de 2000, en concordancia con las medidas de apoyo a las energías renovables que se estaban llevando a cabo en el resto de Europa, se había venido aprobando la regulación que establece las condiciones técnicas y administrativas, y que supuso el inicio de un lento despegue de la fotovoltaica en España. En 2004, el gobierno español eliminó las barreras económicas para la conexión de las energías renovables a la red eléctrica. El Real Decreto 436/2004 igualó las condiciones para su producción a gran escala, y garantizó su venta mediante primas a la generación.
Gracias a esta regulación, y el posterior RD 661/2007, España fue en el año 2008 uno de los países con más potencia fotovoltaica instalada del mundo, con 2708 MW instalados en un sólo año. Sin embargo, posteriores modificaciones en la legislación del sector ralentizaron la construcción de nuevas plantas fotovoltaicas, de tal forma que en 2009 se instalaron tan sólo 19 MW, en 2010, 420 MW, y en 2011 se instalaron 354 MW, correspondiendo al 2 % del total de la Unión Europea.
En términos de producción energética, en 2010 la energía fotovoltaica cubrió en España aproximadamente el 2 % de la generación de electricidad, mientras que en 2011 y 2012 representó el 2,9 %, y en 2013 el 3,1 % de la generación eléctrica según datos del operador, Red Eléctrica.
A principios de 2012, el Gobierno español aprobó un Real Decreto Ley por el que se paralizó la instalación de nuevas centrales fotovoltaicas y demás energías renovables. A finales de 2015 la potencia fotovoltaica instalada en España ascendía a 4667 MW. En 2017, España cayó por primera vez de la lista de los diez países con mayor capacidad fotovoltaica instalada, al ser superado por Australia y Corea del Sur. Sin embargo, en julio de 2017, el Gobierno organizó una subasta que adjudicó más de 3500 MW de nuevas plantas de energía fotovoltaica, que permitirán a España alcanzar los objetivos de generación de energía renovable establecidos por la Unión Europea para 2020. Como novedad, ni la construcción de las plantas adjudicadas ni su operación supondrá algún coste para el sistema, excepto en el caso de que el precio de mercado baje de un suelo establecido en la subasta. La gran bajada de costes de la energía fotovoltaica ha permitido que grandes empresas hayan licitado a precio de mercado.

⇒Para conocer más sobre la energía solar en España pulse en este enlace.

Beneficio medioambiental

La cantidad de energía solar que alcanza a la superficie terrestre es enorme, cerca de 122 petavatios (PW), y equivale a casi 10 000 veces más que los 13 TW consumidos por la humanidad en 2005. Esta abundancia sugiere que no pasará mucho tiempo antes de que la energía solar se convierta en la principal fuente de energía de la humanidad. Adicionalmente, la generación eléctrica mediante fotovoltaica presenta la mayor densidad energética (una media global de 170 W/m2) de todas las energías renovables.
A diferencia de las tecnologías de generación de energía basadas en combustibles fósiles, la energía solar fotovoltaica no produce ningún tipo de emisiones nocivas durante su funcionamiento, aunque la producción de los paneles fotovoltaicos presenta también un cierto impacto ambiental. Los residuos finales generados durante la fase de producción de los componentes, así como las emisiones de las factorías, pueden gestionarse mediante controles de contaminación ya existentes. Durante los últimos años también se han desarrollado tecnologías de reciclaje para gestionar los diferentes elementos fotovoltaicos al finalizar su vida útil, y se están llevando a cabo programas para incrementar el reciclaje entre los productores fotovoltaicos.
La tasa de retorno energético de esta tecnología, por su parte, es cada vez mayor. Con la tecnología actual, los paneles fotovoltaicos recuperan la energía necesaria para su fabricación en un período comprendido entre 6 meses y 1 año y medio; teniendo en cuenta que su vida útil media es superior a 30 años, producen electricidad limpia durante más del 95 % de su ciclo de vida.

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies